If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-1640=0
a = 1; b = -10; c = -1640;
Δ = b2-4ac
Δ = -102-4·1·(-1640)
Δ = 6660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6660}=\sqrt{36*185}=\sqrt{36}*\sqrt{185}=6\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{185}}{2*1}=\frac{10-6\sqrt{185}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{185}}{2*1}=\frac{10+6\sqrt{185}}{2} $
| 17x−16=−18+13x | | 9x-2=2x+12=24 | | 58x-8=52x+4 | | 90-x=0.8 | | 14+7rr=7 | | w=85.6 | | 5.5(8-y)+8.5y=53 | | -6p-33=80 | | 168=21×x | | 9x-3x-3=-9 | | (4y+12)=22 | | -25z=-125 | | 2x+9=237 | | a-37=-12 | | 2(3+2y)= | | 2^(3x)=11 | | ^(3x)=11 | | 8x-8(4x+19)=-15 | | –9u=–8u+7 | | 2x-(50-x)0.5=77.5 | | n/3.14=70= | | 100+x-10+45=180 | | -8r=42 | | 79+19x=1 | | 79x+19=1 | | 4(x-3-x=x-6 | | x²+10x–875=0 | | 0.18(y-7)+0.08y=0.02y-0.03(60) | | 3.4z=+5-2.4z | | -16+1/5b=17 | | 4b–5=2b+1 | | 2w^2-6w=28 |